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A new form of the equations for the time-dependent statistical matrix of a spin system is used to derive 
the modified Bloch equations, without considering details of the relaxation mechanism. A number of re
strictive conditions are imposed on the system, most of which agree well with known limitations of the 
applicability of the modified Bloch equations. In order to avoid complications, only spins one-half are con
sidered. The theory does not apply to the case where the relaxation is anisotropic but where the constant 
field and an applied rotating field are comparable in magnitude. 

1. INTRODUCTION 

THE motion of spin systems in liquids and in some 
solids under influence of external fields is well 

described by the modified Bloch equations (MBE). 
These were obtained1 as a generalization of the Bloch 
equations to weak fields, in which the relaxation towards 
thermal equilibrium in the constant external field was 
replaced by relaxation towards thermal equilibrium in 
the instantaneous total applied field. In both versions 
the relaxation is represented by a simple rate term in the 
differential equation for M, but if anisotropic, the new 
form assigns the instantaneous total field, and not the 
constant field, as the direction of anisotropy. 

While these equations are plausible and well verified 
experimentally,2 a derivation from first principles has, to 
our knowledge, not yet been published. As a conse
quence, it is not clear to which systems and under what 
conditions they can be expected to apply. Using a 
statistical method which is described in the preceding 
paper,3 we have found a general derivation and condi
tions of applicability. It is presented in the following. 

2. STOCHASTIC EQUATIONS 

The magnetization of a system with identical spins S* 
is given by 

M=Tr£SV*7TW. (1) 

We use units with %y=h=k=l, where y is the gyro-
magnetic ratio of the spins and k is the Boltzmann con-

* This work was begun and completed during two consecutive 
summers at the California Research Corporation, La Habra, 
California. 

t Guggenheim Fellow, 1962. Present address: Ohio State Uni
versity, Columbus, Ohio. 

1 R . S. Codrington, J. D. Olds, and H. C. Torrey, Phys. Rev. 95, 
607 (1954). 

2 G. Whitfield and A. G. Redfield, Phys. Rev. 106, 918 (1957). 
8 J. Korringa, preceding paper, Phys. Rev. 133, A1228 (1964). 

stant. pe
T is the statistical matrix of the total system, 

which we assume to consist of the spins in equivalent 
positions and a lattice. 6 is the temperature at which the 
system is in equilibrium before application of the time-
dependent fields. In Ref. 3 it was shown that Eq. (1) 
can be expressed in terms of a statistical matrix pe which 
operates on the spin variables only, provided that the 
time-dependent fields, applied to the spins, do not 
disturb the thermal equilibrium of the lattice. Assuming 
this to be the case, we have, according to Ref. 3, Eqs. 
(21) and (27): 

M=TrESVTrp*, (2) 

Pe= {W(t-i/26)W*(t+i/2d)U, (3) 

idW/dt=ZSC(t)+h(t+i/26)2W(t), W(0) = 1. (4) 

Here h(t) is the Hamiltonian of the applied time-
dependent fields and 3C(/) is the Hamiltonian of the spin 
system. 3C(t) includes the contribution of a constant 
external field J9V It is time-dependent because it con
tains randomly fluctuating parameters, as explained in 
Ref. 3, which represent the spin-lattice interaction. 
"av" indicates the average over a time long compared 
with the correlation times of 3C(/). h{t) will be taken as 
for a rotating field: 

h^hi, hiifi^HtiSJcosut+SyHmwt). (5) 

The % axis is in the direction of the constant field. 
Equations (2) to (4) contain no condition other than 

that the lattice remains in thermal equilibrium; the 
form of 5C and the time dependence of the random 
functions it contains are, however, to be found from 
very complicated implicit equations, as indicated in 
Ref. 3. For spins f, 0C consists of linear and bilinear 
terms in S* with random variable coefficients; for higher 
spin values quadratic and biquadratic expressions, etc, 
can occur. We now make the following assumptions; 
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(A) The spins are ^, so that 3C(/) takes the form 

3C(0 = H ^ « + E V<(fl-S*+ Z S'.**«>-S>. (6) 

(B) All coefficients V,-(0 and 4^/(0 are random 
functions of time with average value zero and with 
correlation times short compared to the relaxation 
times of the spins. 

Assumption (A) avoids complicated mathematical 
problems, but is perhaps not necessary. Assumption (B) 
is very restrictive, as the systems to which it applies 
are only liquids and (with <1>=0) such solids (as, e.g., 
diluted paramagnetic salts) for which the spin-spin 
interaction can be neglected. We hope to demonstrate, 
however, that this restriction is necessary for the MBE 
to be valid. 

These assumptions permit us, for the purpose of 
calculating M(/), to separate the system entirely into 
one-particle systems: 

3e(*)-»E3C<(fl, pd->Upie, (7) 
where 

Pio={Wi(f~i/2$)Wj(t+i/2B)}„, (8) 

idWi/dt=lSCi(t)+hi(t+i/2d)2Wi(t). (9) 

The conditions for Eqs, (7) to (9) to be valid with 
suitably chosen JC»-(/) are the same as those for Eqs. (2) 
to (4), i.e., the random parameters in 3C»(tf) must 
represent a contact of the spin i with a system in 
equilibrium at the temperature 0. Although, on account 
of the rotating field Hh the spin system is not in 
equilibrium, each of the spin-spin interaction terms is 
modulated through &n(t) with the fluctuations of the 
lattice. As these are, by assumption (B), faster than the 
random reorientations of the spins, they dominate the 
random character of 3C;(0 and thus allow us to apply 
Eqs. (7) to (9). 

As the spins are J, 3C*(/) is of the form 

3Ci(t)=H«Sz
i+RL

i(t)-Si, (10) 

where the time average of Hz,* is zero. Suppressing the 
index i, we finally have 

M=tf<S>, (11) 

<S> = TrSP,/Trp*, (12) 

Po={W(t-i/20)W*(f+i/2$)}„, (13) 

idW/dt^ZHvSz+IlL-S+HiiSxCosaiit+i/ld) 
+Sy &nu(t+i/2$))lW(t). (14) 

B.L(1) is a random function of time with a correlation 
time short compared with the relaxation time of the 
spins. 

3. SOLUTION OF THE STOCHASTIC EQUATIONS 

The solution of Eq. (14) for the special case # i = 0 was 
discussed in a previous publication.4 In a frame rotating 

4 A. Yoshimori and J. Korringa, Phys. Rev. 128, 1054 (1962), 

with the Larmor frequency H0 one finds a random 
rotation, expressible in three Euler angles (xix2xz) 
«= (#j«£ji/'), which are random functions of time. The 
probability P(xyx^t) that the angles change, in the time 
t, from the values Xo to x satisfies the diffusion equation 

BP/et=$0P, (is) 

ffo= (1/2TI)(K,*+KV*)+(1/2TO)K*. (16) 

The operators K are i times the operators of angular 
momentum 

Kx±iKy=exp(±^)[<V dtf^sintf)-1 

X ( d / d ? - c o s * W ) ] , (17) 

Kz=d/d*. (18) 

n and r0 are expressible in terms of the square average 
of the components of HL (assumed here to be isotropic) 
and their correlation time <r 

l / r ^ t f ^ V a + i W ) - - 1 , (19) 

1/T0=<T(HL*)&V. (20) 

In order to solve Eq. (14), we go to a rotating frame 
by applying the transformation 

W(t) = exp(-ia>Szt)W'/t). (21) 

This gives 

idW'/dt^ZAHSi+Hi coMu/2Q)S* 
+tffi sinh(co/20)5y+HL

,(/)-S]^ ,(O, (22) 

where AH=HQ—CO, and where H L ' ( 0 is the local field 
seen on the rotating frame. 

We first consider the high-temperature limit 1/6 —» 0. 
The transformation to a frame precessing around the 
effective field 

W'(t) = expZ--i(AHSz+H1Sx)t']W"(t), (23) 

removes the external field terms and replaces HL with 
H L " , the random field seen on these axes. The procedure 
used in Ref. 4 gives 

dP/dt=$P, (24) 

S=T,GafiKaKfi, (25) 

Gafi=M@La"BLfi'%T, (26) 

where HL" is the average of HL" over a time At 
satisfying 

cr«A/«r . (27) 

T is a relaxation time of the spins, expressible in terms of 
Ga/3. The averages in Eq. (26) are calculated on the as
sumption that the components of HL(t) in the resting 
frame are statistically independent. The short-time 
average must be taken in order to obtain a random-walk 
problem. A simple calculation shows, however, that the 
coefficients Gap depend explicitly on At unless the 
effective field He= (AiaP+fl?)17* and the correlation 
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times a satisfy 
# e ( « l . (28) 

We will assume in the following that this inequality is 
obeyed. In view of assumption (B), this is hardly a 
restriction except for the fact that it excludes frequencies 
very far from resonance and exceedingly large values 
of Hi. 

With Eq. (28) satisfied, it is easier to solve Eq. (22) 
(1/0=0) directly, as one can take the short-time 
average of the equations of motion of the Euler angles in 
that frame with At satisfying 

>«AK<r and #eAK<l. (29) 

These inequalities guarantee that the change in the 
Euler angles in the rotating frame due to the random 
field and the effective field, respectively, is small. A 
simple calculation gives 

dP/dt=$P, CF=3ro+3:i, 

Zi^-AHKt-HtKx, 

(30) 

(31) 

as was to be expected. 
At finite temperatures, the imaginary term in Eq. 

(22) offers a new problem. Equation (22) is still solved 
by a rotation, but the Euler angles will take nonreal 
values. One can, however, follow the same procedure by 
considering x and its complex conjugate x to be inde
pendent variables, and by using correspondingly a 
probability P(x,x; xo,Xo,t) of six variables. We find 

dP/dt=$P, 3r=5ro+5ri+3r2, (32) 

ffo= (1/2T1)£(KX+KX)*+ (KV+RV)*1 

+ (1/2T0)(KZ+KZ)\ (33) 

^=-AH(Kz+Kz) 
-H1coM^/2B){Kx+Kx), (34) 

$1=-m1wh(ta/2B){Kv--Ry). (35) 

Here the barred vector K has the same form as K, Eqs. 
(17) and (18), but with #, <p, \p changed to #, y>, $. 

4. THE MACROSCOPIC EQUATIONS 

The equations of motion for (S(/)) will now be ob
tained in the "high" temperature approximation, i.e., 
up to and including terms in 1/0. On the rotating frame 
one has 

<S /)=TrSp//TrP/, (36) 

pe = exp (iwSzt)po exp (—icoSzt). (37) 

From Eqs. (13), (21), and (22) one finds, to first order 
in 1/0: 

exp(iwSzt)W(t-i/26) 
= exv(-Szu/26)W'(t-i/26) 
= £l-(HoS.+H£9)/2BlW'(t). (38) 

We now write Eq. (36) as 

(Sa
f)—Ra/Pof, 

Ri =TrSipe , 

(39) 

(40) 

i=x, y, z, 0, 5o= 1. Using the invariance of a trace for 
cyclic permutation, Eq. (38) gives 

i2/=Tr(i?*"-£o"Hi/20), 

Ru'=Tr(Ry"), (41) 

R/^TrW-Rj'Hv/ie), 

R(>'=Tr(R<l"-Rx"H1/2e-Rz"Ha/2e)> 

R/^iW'HQSiW'it)}^. (42) 
where 

The time derivative of these quantities can be found by 
expressing the average in terms of the probability P: 

RT-J. P(xxt)W< (x)SiW(x)p (x)p (x)d?xd*x, (43) 

where W(x) is the familiar expression of a rotation 
matrix for spin § in Euler angles and p(#)=sin#. 
Therefore, 

dR/'/dt= f(VP)WiSiW= [p&QViSiW), (44) 

where 3^ is the Hermitian conjugate of SF, obtained by 
changing the sign of SFi and &%. Carrying out the 
differentiations, we find 

with 

dR/'/dt^Ti/'R/', 

-1/T2 -AH 0 0 
AH - I /T2 - # 1 -coHt/26 
0 Hi -1/Tt 0 
0 -uHt/26 0 0 

l / r i = 1/n, 
l / r 2 = l ( l / r o + l / r i ) . 

(45) 

,(46) 

(47) 

Taking the trace, and inserting in Eq. (41), one obtains 

dR//df=j:Ti/R/, (48) 

r.'= 11] — 

-1/T2 -AH 0 ffi/202Y 
AH -I/T2 -Hi 0 
0 Hi -i/Ti m/2eTx 

Ht^BTt 0 H0/20T! 0 

(49) 

Substituting in 

d(Sa')/dt=(dRaydt)/Ro'-Ra'(dR^dt)/Ro'\ (50) 

one sees that the last term is of third order in 1/0, 
because Ra'(a=x, y, z) are small of first order. One 
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therefore has 

d(sj)/dt= - {{s^-H^ieyTz-kHiSy'), 
d(sy')/dt= -(SyyTi+AnisA-Hdss), (si) 
d(S2')/dt= - ((S/)-Ho/2B)/Tl+H1(Sv'), 

which, but for an unimportant difference to be discussed 
below, are the MBE. 

5. ALTERNATIVE INTERPRETATION 

This derivation of the MBE can be given a different 
and intuitively more appealing interpretation which has 
guided us in the beginning stage of this work. We will 
briefly sketch our original approach, and show that it 
goes completely parallel with that given above. 

The idea was to obtain the ensemble average for a 
large number of spins from the time average over the 
motion of a single spin. Any spin experiences the ex
ternal fields and a fluctuating field, representing its 
interaction with the other spins and with the lattice. It 
"senses" the value of 6 only through the latter inter
action. This field must therefore be such that, in the 
time average, it tends to produce a Boltzmann distribu
tion, in the direction of the instantaneous total field. 
The rotating field will, of course, prevent this equilib
rium state from being realized. The fluctuating field 
must therefore be complex, as it must produce transi
tions between the two spin states (quantized in the 
direction of the total field) with a priori probabilities 
p±T satisfying 

»+£*-==«-.£_+, n-./n+=l+Htot/0- (52) 

A real field gives ^+_=<^_+; the fluctuating field must 
therefore have rotating components in + and — direc
tion of different intensity. 

If HJ {t) is this complex^field, seen in the rotating 
frame, we would have, for the operator S'(2) in the 
Heisenberg representation 

S'(t) = Wc'*(t)SWc'(t), (53) 

idWc'/dt= (AHSz+^Sv+Uc'it) • S)We'(t). (54) 

The simplest way to obtain a field of this type is to 
assume that it becomes a real field #z/(/) after a 
nonunitary transformation exp[— (HoSz+HiSx)/2$2, 
by which the occupation numbers n± are absorbed in 
the normalization of the wave function. Writing 

HV(fl = exp [ - (HoS,+H1S.)/2BlW'(t), (55) 

one has 

idW'/dt= (AHSz+H1Sx+iH1Sya>/26 
+BU'.S)1T(0. (56) 

Comparing with Eqs. (38) and (22) one sees that, to first 
order in 1/0, Wc

f=-^x^{iS^t)W(t~i/2e). Therefore, one 
can find the long-time average of dSa{t)/dt by using the 
same diffusion equation. This gives the Eqs. (48) and 

(49) as operator equations. Taking the trace gives 
the MBE. 

6. CONCLUDING REMARKS 

The limiting conditions under which the above deri
vation of the MBE applies can be summarized as 
follows: (1) All spins are equivalent; (2) the spins have 
value | ; (3) the system is a liquid or a gas, or a solid in 
which spin-spin interaction can be neglected compared 
with spin-lattice interaction; (4) the important correla
tion times a of the lattice motion are short compared 
with the relaxation time of the spins; (5) the applied 
rotating field satisfies Hicr<^l; (6) the lattice is in 
thermal equilibrium. It would be of interest to know if 
these conditions, which are sufficient for the validity of 
the MBE, are also necessary. 

With higher spin values and possibly quadrupole 
interactions, one expects in general to find several 
relaxation times, corresponding to different transitions 
between the spin levels. A discussion, under which con
ditions the MBE are valid in the average, falls outside 
the scope of this paper. With respect to conditions (3), it 
is well known that spin systems not satisfying it have in 
general a non-Lorentzian line shape, i.e., nonexponential 
relaxation. In the light of the present approach, this can 
best be understood in conjunction with assumption (4). 
The part of the local field HL caused by neighbor spins 
owes its time dependence to liquid or lattice motion and 
to random reorientation of the spins. This last source of 
time dependence has correlation times comparable with 
the relaxation time of the spins. In the light of the 
present theory, this gives a non-Markoffian system for 
which the diffusion equation is far more complicated 
than Eq. (15) and does not lead to exponential relaxa
tion. Therefore, unless the liquid motion completely 
averages out the spin-spin interaction in times <r<KT, one 
can have the MBE only if the spin-spin contribution to 
HL(() is negligible. Although certain qualitative aspects 
of the MBE may remain valid, it is precisely to systems 
not obeying these conditions that the theory of Redfield5 

applies and for which it predicts deviations from the 
MBE. 

Condition (5), although not serious from a practical 
point of view, is responsible for the fact that our formal
ism does not apply to the most general case considered 
in Ref. 1, i.e., when T^T2 and Hi^Ho. This comes 
from the fact that these two relations are incompatible 
with Hi<x<£X, because a difference between T\ and T% 
can be traced to large denominators of the form 
l+Ho2a2, appearing differently in the expressions for T\ 
and r2 . Therefore, in the framework of the present 
theory, T^T^ implies H^>Hh and the question 
whether the axis of anisotropy of the relaxation is along 
Ho or Htot, as suggested in Ref. 1, becomes immaterial. 
This leaves the general case undecided, although it 

5 A. G. Redfield, Phys. Rev. 98, 1787 (1955). 
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seems doubtful that one will find a simple result as 
suggested in Ref. 1. 

The last condition, finally, depends on the value of #1 
and of Ji , and also on the lattice-lattice relaxation 
times which will become a factor of importance in 
paramagnetic salts at low temperatures. 

I. INTRODUCTION 

THE theory of the many-fermion system has been 
the object of intense study for many years. 

This paper is limited to a small portion of the over-all 
field, the study of the perturbation theory of the zero-
temperature "normal" state—that state in which there 
is no binding which would lead to a phenomenon such 
as superconductivity. The basic theory for the perturba
tion treatment has been developed, and is presented 
briefly in the next section as the basic tool on which 
the remainder of this investigation depends. This basic 
tool is the Brueckner-Goldstone linked-cluster expan
sion1 (BG expansion), the perturbation theoretic 
expression for the ground-state energy of the system 
described above. With the BG expansion as a basis, 
the properties of a many-fermion system are then 
analyzed and several general relations are developed. 
These have previously been derived with the framework 
of Green's function theory, but the equations developed 
here are expressed as explicit perturbation series in 
contrast to some of the original derivations. 

A "change-of-parameter" technique is then developed 
and employed to derive an approximation to the BG 

* Based in part on a thesis submitted by K. S. Masterson to the 
Faculty of the University of California, La Jolla, in partial fulfill
ment of the requirements for the degree of Doctor of Philosophy. 

t Present address: U. S. S. Wright (CC-2), % F.P.O., New 
York, N. Y. 

!K. A. Brueckner, Phys. Rev. 97, 1353 (1955); 100, 36 
(1955); The Many-Body Problem (John Wiley, & Sons, Inc., 
New York, 1959); J. Goldstone, Proc. Roy. Soc. (London) A239, 
267 (1957). 
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expansion in terms of the true momentum densities 
instead of the Fermi step function unperturbed distribu
tion. It is shown that the above replacement, coupled 
with the neglect of the "self-energy" terms in the 
expansion, yields an approximation which is exact 
through fourth order and whose accuracy is estimated 
to be approximately ± 2 MeV for nuclear matter. This 
approximation further leads to a modified form of the 
Brueckner K matrix approximation in which the self-
consistent energy denominators are replaced by free 
kinetic energies and the Fermi distributions by the 
(self-consistent) momentum densities. An application 
to nuclear matter calculations in which the momentum 
densities are calculated to low order in perturbation 
theory, avoiding the self-consistency restriction, is 
discussed in another paper.2 

II. THE BRUECKNER-GOLDSTONE LINKED-
CLUSTER EXPANSION 

The heart of the perturbation theory of the normal 
state of zero-temperature many-fermion systems is the 
Brueckner-Goldstone linked-cluster expansion (BG 
expansion).1 It is briefly reviewed in this section because 
of its importance in the following sections and in order 
to establish notation. 

The Schrodinger equation for the system is 

(Ho+HT)y=E*= (Eo+AE)*, (2.1) 

2 K. S. Masterson, Jr. (to be published). 
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Perturbation theoretic equations for several properties of the zero-temperature many-fermion normal 
system are rederived from general considerations. Though none of the equations are new, some of the deriva
tions are, and taken together they form a brief and simple summary of many-fermion relations and a basis 
for further investigation of the basic perturbation description of the many-fermion normal system: the 
Brueckner-Goldstone expansion. A "change-of-parameter" technique is then developed and employed to 
investigate the possible use of the true momentum density instead of the unperturbed Fermi distribution in 
the Brueckner-Goldstone expansion and in the Brueckner iT-matrix approximation. The result is a simpler, 
approximate perturbation series for the interaction energy, whose accuracy for nuclear matter is estimated 
to be approximately ± 2 MeV. The new approximation is exact to the fourth order. 


